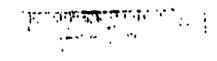
FINAL REPORT

Contract DACA90-80-C-0083
Energy Engineering Analysis Program in Europe
Vicenza Military Community


Volume I Executive Summary

19971016 178

prepared by

SVERIBLE & PARCEL AND ASSOCIATES, Inc.
St. Louis, Hissouri
and
Gehrmann Consult, GebH
Wissbaden, Went Germany

Revised 20 May 1983

The second of the second

DEPARTMENT OF THE ARMY

CONSTRUCTION LAGING EXECUTED A STRUCTURE OF THE STRUCTURE AND A STRUCTURE OF THE STRUCTURE AND A STRUCTURE OF THE STRUCTURE O

TH-1 Library

1: Sep 199?

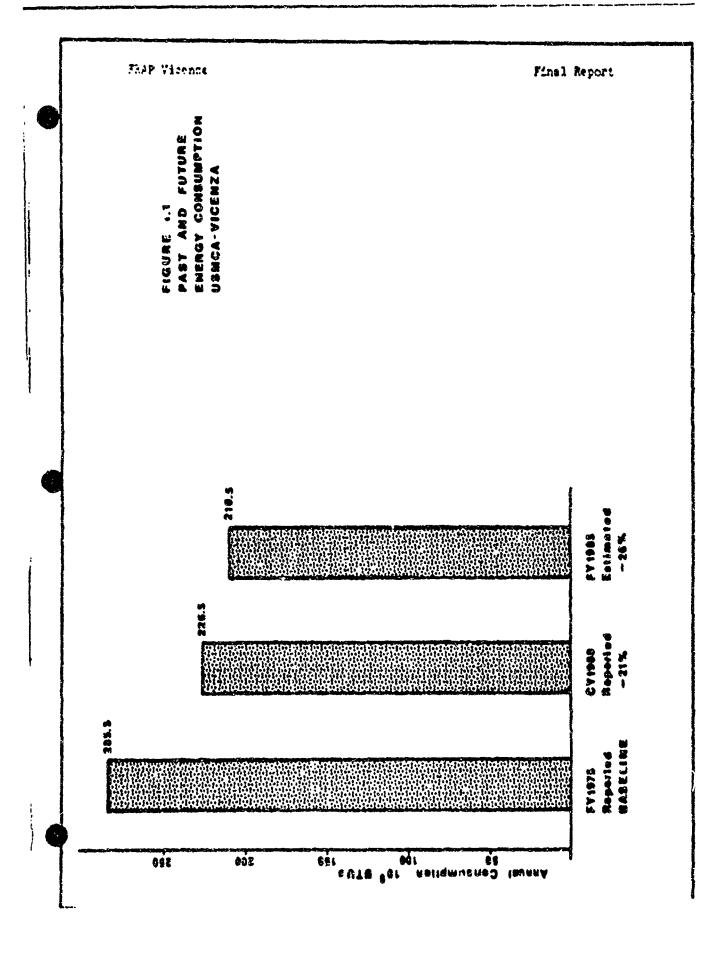
Sesed on SOW, these Energy Studies are unclassified/unimited. Distribution A. Approved for public release.

EXECUTIVE SUMMARY

I. INTRODUCTION

A. General

- 1. This EEAT study was performed on the two major installations on USHCA Vicenza, Italy: Comp Ederle and Villaggio.
- 2. It enalyses the energy consumption patterns of calendar year 1980 and evaluates the energy conservation program established for 1981.
- 3. The field work commenced in January 1981 and was completed in August of them year.
- 4. The analysis made extensive use of BLAST (Building Loads And System Thermodynamics).
- 5. New policies for determining heating plant efficiency are recommended.
 - 6. No new funded projects have been developed.


B. Results

- 1. Recommended actions will save 37.9 m 10⁹ Btu/yr worth \$192,000 in 1980, halt a contemplated \$5 million investment is a co-generation project, and save an additional \$138,000 per year financial losses incidental to the \$5 million.
- 2. Increy consumption has fallen 21% in the study area since 1975.
 - 3. 1985 energy consumption will be 26% less than 1975 levels.

II. ENERGY CONSUMPTION

A. Past, Present, and Future

- The study areas had a reported FY 1975 energy consumption of 285.5 x 10⁹ Meus.
- 2. During the period analyzed in this report--calendar year 1980--records indicate a consumption of 226.5 x 10⁹ Stus, 21% lass than the 1975 baseline.
- 3. Formideble curtailments and voluntary but strict compliance with the Italian heating restrictions will have lowered consumption further during 1981, but these practices are not expected to continue.

EEAP Vicenza

Final Report

4. If all planned community projects, including the insulation projects, are completed, estimated FY 1985 consumption will be 186.8 x 10⁹ Btu. If insulation projects are dropped, estimated FY 1985 consumption will be approximately 210.5 x 10⁹ Btu, 26% less than the 1975 baseline. Figure 1.1 illustrates this historical progression is yearly consumption.

S. Inera, Use Patterns

I. The distribution of energy among its various uses was analyzed using BLAST (Building Loads and System Thermodynamics). This distribution is summarized in Tables I and II below.

TABLE I
DISTRIBUTION OF 1980 VICENZA ENERGY USE
(both Ederle and Villaggio)

USE	10 ⁹ Atu	_1_
Space Hesting	104.4	44.1
Distribution System Losses	5.0	2.2
Domestic Not Water	6.6	2.9
Meating Plant Losses	60.9	26.9
Building Electrical	17.1	7.5
Air Conditioning	14.8	6.5
Menting Plant Electrical	4.5	2.2
Perimeter and Street Lighting	1.1	.5
Electrical System Losses	.7	.3
L.P. Gam (cooking)	11.0	4.9
-	226.5	100.0

TABLE II

ESTIMATED DISTRIBUTION OF 1983 VICENZA ENERGY USE

(both Ederle and Villaggio)

USE	10 g Beu	\$
Space Heating	94.0	44.7
Distribution System Losses	5.0	2.4
Domestic Hot Vuter	6.6	3.1
Meating Plant Losses	35.3	26.4
Suilding Electrical	17.1	4.1
Air Conditioning	14.\$	7.0
Mesting Plant Electrical	4.9	2.3
Parimeter and Street Lighting	1.1	.5
Electrical System Losses	.7	.3
L.P. Ges (cooking)	11.0	5.2
	210.5	100.0

2. The distribution of energy by sources is given in Table III below.

FABLE III
ENERGY CONSUMPTION BY SOURCE, CY 1980
USMCA VICENZA

Source	Asount	Energy	Cost
Electric Energy	11.8 x 10 kVbr	40.2 x 10 ⁹ Btu	\$489,100
Elactric Demond	***	444	\$2,500
95 Fuel Cil	1,327,700 gallage	198 x 10 ⁹ Btu	\$61,400
LP Gas	437,400 liters	11.5 2 10 2 200	82,235
		269.7 z 10 ⁹ Ben	41.515.255

3. A picture of the energy flow on each installation is above on the Input-Output diagrams in Volume II.

EEAP Vicenza

Final Report

C. Typical Building Energy Consumption

- 1. All the buildings is the study area were assigned to one of size fullding types. Descriptions and energy parameters for each of these types can be found in Volume III.
- 2. "Average" buildings of each type were scastructed from sudit data using hand calculating tachniques. The year-round energy consumption characteristics of each "average" building was ascertained using annual BLAST.

D. Heating Plant Consumption

1. The calculated monthly consumption for the two Vicrass heating plants are given below.

MONTHLY CONSUMPTION, EDERLE 206

Mosth	Input (10 Btu)	Output (10 Btu)	Efficiency
Jen	24.3	16.4	.677
Ieb	15.?	10.3	. 654
Mas	15.7	10.3	.653
Apr	6.6	3.9	.586
Nay	3.6	1.9	.519
Jun	.7	.3	.469
Jul	.7	.3	.469
Aug	. ?	.3	.469
Sep	2.4	1.2	.304
Oct	5.8	3.4	.579
voK	13.3	8.5	.641
Dec	19.7	13.1	.667

REAP Viceuza

Finel Report

MONTHLY CONSUMPTION, VILLACGIO 301

Honth	Input (10 ⁹ Btu)	Output (10 3tm)	Efficiency
Jan	19.2	12.8	.669
Peb	13.4	8.6	.646
Mar	13.1	4.5	.648
Apr	4.5	2.7	.585
Hay	.8	.2	.301
Jun	.8	.2	.301
Ju1	.8	.2	.301
Aug	. 0	.2	.301
Sap	. 8	.2	.301
Oct	4.4	2.5	.561
Nov	11.8	7.5	.636
Dec	16.7	10.7	.641

III. BEZROY CONSERVATION OPPORTUNITIES ASSESSED

A. Community Projects

1. ECIP parameters were calculated for the funded projects in the Vicenza Community Energy Conservation Plan. These are shown below.

ECIP PARAMETERS OF COMMUNITY PROJECTS

Project		Cost \$10	Sayings 10 Btu	Innefiz \$10	#\c	<u>\$/</u> ¢	Payback Years
II.1.d	Stamer IX	17	26	.78	. 95	1.5	142*
11.1.*	Summer IX	17	40	1.2	.97	2.4	910
11.1.2	Soler for 210	10	15	.\$.05	1.5	143
11.1.1	commis. Cases	281	48	1.4	•	. 17	1,405
11.1.1	bowling alley doors	40	1	. #3	•	. 03	10,000
II.1.m	sepair bldg 102	65	1	ده.	•	.02	16,250
11.1.2	fix bldgs 6 & 7	561	608	24.4	.04	1.4	150
11.1.0	fix bldg 308	195	5	. 15	•	.03	5,480
11.1.p	wash ruck	55	1	.03	•	.62	11,730
11.1.q	repair heating syst.	142	1,500	45.7	. 32	19.6	20

^{*} As assessed by the study team.

EEAP Vicenza

Final Report

Project		Cost \$103	Seyings 10 Btu	Benefit \$10	B/C	₽/C	Payback Tears
11.1.2	Aluminum roofs	55	3	.09	•	.03	3,930
II.1.a	double door bldg 3	3	1	.03	.01	.33	640
II.1.t	new dears, school	50	2	.06	•	.04	21,320
II.1.u	fix bldg 106	160	95	2.9	.02	.59	359
11.1.4	fix bldg 107	132	90	2.7	. 02	.68	312
II.1.w	power factor	23	30	2.6	. 11	3.9	57
ll.i.x	replace tank	10	1	.03	*	. 1	2,130
11.1.y	rewire MCO slub	35	1	.06	•	.13	1,670
II.2.a	fix bldg 4	360	400	12.2	.03	1.1	193
11.2.6	fix bldg 100	200	90	2.7	.01	.45	47
11.7 :	fix bldg 311	45	2	.06	•	.04	4,800
11.3.4	žiz knap. wiedows	350	200	6.1	. 02	.37	373
II.2. æ	new compt.	45	5	. 15	•	.11	2,000
II.2.£	walk-in feer	30	•	. 17	•	.20	1,111
II.2.2	new street lights	86	12	.35	•	.14	1,590
II.2.h	repair besting syst.		1.800	54	.63	21	10
11.2.1	fix bldg 5	360	600	12	.03	1.1	192
11.2.1	fix bldg 101	800	90	2.7	.01	.45	473
II.2.h	revire bldg 302	75	1	.03	•	.01	16,700
11.2.1	exhaust hoods	45	1	.03	•	.02	10,000
II.2.m	rewire bospital	260	2	.06	•	•	28,900
II.2.0	repovate bakery	100	100	3.0	. 03	1.0	213
11.2.0	fix bldg 1	300	300	9.0	. 03	1.0	213
II.2.9	fix bldg 1, 2, 5 3	190	500	15	. 08	.08	81
II.2.q	fix bldg 8	360	400	12	.03	1.1	193
17.2.r	fix bldg 104	200	90	2.7	.01	. 45	474
II.2.s	impulate 6 bldgs	300	500	3.9	. 05	1.7	\$3.5
II.2.t	fix bldg 2	250	250	7.4	.03	1,0	213
II.2.u	fix bldg 3	250	250	7.6	. 63	1.0	213
11.2.v	ravire 40 blegs	136	1	.03	99	•	41,300
II.2.w	fix consections	150	1	.03	٠	•	33,300
II.2.x	city gas	390	400	19	.05	1.3	100
II.2.y	caryeting	25	ı	.03	•	.94	5,330
II.2.a	sev viodovs	\$2	\$.15	•	.06	3,500
11.2.aa	DEW ARU	180	2	.06	er	.01	20,000
11.2.56		360	400	12	.03	1.1	192
II.2.ce	fix bids 105	260	20	2.7	01	. 45	474
11.2.ds	fix 11432 102, 109	120	70	2.1	.66	.58	366

Project		\$10 ³	Serings 10 Btu	Benefit \$10	3 /€	\$/C	Payback Years
11.2.€0	fix bldge 300, 301	120	70	2.1	.02	.58	366
11.2.21	fix chapel	115	40	1.2	.01	.35	613
III.a	district heat	6,000	80,000	2,340	. 39	13	17
HII.b	sew boilers	120	2,000	61	.51	17	13
III.e	insulate Villaggio	3,000	10,000	303	. 10	3.3	64
III.d	bot water system	455	450	14	.03	1	216 *
III.e	veether guard	3,200	0	0	•	•	. *
III.£	Ederle solar	1,000	3,710	113	.11	.37	57*
III.g	Villaggio solar	400	1,485	45	.11	.37	57*
III.E	rewire 20 bldgs	160	234	6.8	.04	1.5	152
117.4	rewire bldg 200	50	2	.06	•	.04	5,560
III.j	repair switchgear	10	10	.29	.03	1.0	222
III.k	weather guard	455	Q.	0	•	•	- *
711.1	repair roofs	212	120	3.6	.02	.37	377
m.III	repair soofs	232	120	3.6	.02	.52	412
III .a	city gas	400	3	.15	•	•	17,900
111.0	fix doors	204	5	. 15	-	.02	8,700
III .p	insulate roofs	232	120	3.7	.02	.52	412
111.g	sev windows	76	80	2.4	. 93	1.1	197
III.r	fix doors	235	5	.15	•	.02	10,000
III.a	BEN ASTAR	9	1	.03	•	.11	1,920

^{*} As assessed by the study team.

2. Additional Measures Assessed

- 1. The possible use of coal as a boiler fuel for Vicenza.
- 2. A load shedding system for Camy Ederle.
- 3. Electric meters for tement units.
- 4. #2 oil burning summer hot water beaters for Reerle and

Villaggio.

- 3. Generalized solar hot water heating.
- 6. ZHCS.
- 7. Double roofs for family houses to reduce number heat

geis.

IV. PROJECTS

1. We have no projects to add to Vicenze's existing program.

V. RECOMMENDED ENERGY MANAGEMENT PLAN

- 1. The effectiveness of Viceaze's existing energy management activities is attested to by the 21% reduction achieved by the community before the study began and by their performance on recent USAREUR energy conservation competitions.
- 2. The Victors FK department has been restaffed and reorganized since the close of the study in January 1982. However, those seconmendations designed to increase the department's ability to review and administer projects prepared by A-E firms, as well as those meant to decrease its relative isolation, should be considered. Master planning abould give considerable weight to energy conservation from consolidation of planned construction.
- 3. Vicenza has a higher proportion of social, athletic, and dependent support activities than other communities encountered by the study team (Livorno in Italy and Karlsruhe in Germany). Cuthacks in these areas, such as no after-dark athletics, no air conditioning in theaters, clubs, and libraries, and similar actions, are possible and well-known to the community command. We have taken no position concerning such steps.
- 4. Concerning the community's energy savings projects, funded projects dealing with insulating existing buildings, wholesale replacement of doors and windows, and building or distribution system rewiring should be de-emphasized unless required for non-energy-related ressound. He more solar hot water projects should be planned. EMCS should not be installed.
 - 5. Boiler efficiency tests based on stack gas should be instituted.
- 6. Both active and passive solar devices and other passive energy conservation features abould be incorporated into the designs of all future construction.

ZZAP Vicenza

Final Report

VI. OTHER STUDY RESULTS

- 1. Additional investigations of several topics were required to faithfully analyze the energy conservation and ecodomic characteristics of the Vicenza community. These additional topics included predicting Italian prices into the next decade, and using the BLAST computer program to model typical military bases.
- 2. The course of future prices in Italy was forecast using information published by the Department of Energy and from an econometric model of the world economy developed by the University of Pennsylvania and the University of Bologna, among others. These projections are described in Appendix F-1.
- 3. A BLAST model of Camp Ederle and Villaggio della Pace based on nine average building types was used to determine the paths followed by funds and fuels consumed on Vicenza through to their final loss to the environment as waste heat.